Warm Up

How many molecules of O_2 are in 1.0 x 10^{-12} moles O_2 ?

Warm Up

How many grams are in 0.564 mol F₂?

Objective:

TSWBAT:

Describe the relationship between moles and mass and moles and volume Also, practice making conversions between moles and representative particles.

Review:

What are the three ways we measure matter?

- 1. Counting
- 2. Mass
- 3. Volume

We are still on counting.

Counting:

Warm Up

What are the products of the combustion of any hydrocarbon? Give an example.

If you are doing a make-up project, they are due on Monday, Nov. 19th.

How many atoms of Fe are in 7.77 mol Fe?

More practice:
How many representative particles are in 16.7 mol oxygen?
(ask yourself what the rep.particles for oxygen would be)

How many mol of Lithium are in 5.55×10^{14} atoms of Li?

Warm Up

How many moles of bromine are in 7,888,112 molecules of bromine?

Get a calculator & your book

y Ca(NO3)2 Warm Up What is the formula for: (NH4).

Ammonium sulfide Calcium nitrate ----Iron (III) phosphate

Get a work sheet after you finish the quiz! FePOy

Mole Road Map: Where am I???

1. How many atoms are in 4.56 mol Fe?

H.56 mdx 6.02x10²³ atoms

2. How many grams are in 7.68 mol CH4?

C=12
H=1x4/16

3. How many moles would 4.56 x 10⁵⁴ 4.56×1054 molecules + 6.02×10²⁻³ molecules + 6.02×10²⁻³ molecules + 5.67 g Br₂?

5.67 g Br₂ × 1.00 mol 159.8 g Br₂ =

2.50 moles Fe(OH)2 to grams

$$Fe = 55.8 = 0$$
 $O = 16x2 = 32$
 $H = 1.0x2 = 2$

15.0g N203 -> moles

$$|5.09 \times \frac{1.00 \text{ mol}}{76.09} = \frac{|5.0|}{76.0} = \frac{15.0}{76.0} = \frac{15.0}{76$$

How many atoms of tin are in 3.70 mol?

$$6.02 \times 10^{23}$$
 atoms $3.70 \text{ mol } \times \frac{10^{23}}{1.00 \text{ mol}}$

The Mole-Mass Relationship

How do you convert the mass of a substance to the number of moles of the substance?

Use the molar mass of an element or compound to convert between the mass of a substance and the moles of a substance.

$$mass \, (grams) = number \, of \, moles \times \frac{mass \, (grams)}{1 \, mole}$$

$$moles = mass (grams) \times \frac{1 mole}{mass (grams)}$$

What is the molar mass of H₂O?

What is the molar mass of carbon tetrachloride?

What is the molar mass of sulfur hexafluoride?

Converting Moles to Mass

The aluminum satellite dishes in Figure 10.8 are resistant to corrosion because the aluminum reacts with oxygen in the air to form a coating of aluminum oxide (Al_2O_3). This tough, resistant coating prevents any further corrosion. What is the mass of 9.45 mol of aluminum oxide?

Analyze List the known and the unknown.

Known

Unknown

• number of moles = $9.45 \text{ mol Al}_2\text{O}_3$

• mass = $? g Al_2O_3$

Calculate Solve for the unknown.

Determine the molar mass of Al_2O_3 : 1 mol $Al_2O_3 = 102.0$ g Al_2O_3 Multiply the given number of moles by the conversion factor relating moles of Al_2O_3 to grams of Al_2O_3 .

mass =
$$9.45 \text{ mol-Al}_2O_3 \times \frac{102.0 \text{ g Al}_2O_3}{1 \text{ mol-Al}_2O_3}$$

= 964 g Al_2O_3

Warm Up

What is the molar mass of FeCl₂?

Warm Up Give the formulas for the following acids:

Sulfuric Acid
Hydrochloric Acid
Nitric Acid
Phosphoric Acid

Objective:

TSWBAT:

Describe the relationship between moles and mass and moles and volume Find the mass, in grams, of 4.52×10^{-3} mol $C_{20}H_{42}$.

Warm Up:

How many moles are 67.3 g of hexane?

There is NO quiz this week. The test on Quiz #9 material is on Wednesday (late start) When iron is exposed to air, it corrodes to form red-brown rust. Rust is iron(III) oxide (Fe_2O_3). How many moles of iron (III) oxide are contained in 92.2 g of pure Fe_2O_3 ?

Analyze List the known and the unknown.

Known

• mass = $92.2 \,\mathrm{g} \,\mathrm{Fe}_2\mathrm{O}_3$

Unknown

• number of moles = $? \text{ mol Fe}_2O_3$

The unknown number of moles of the compound is calculated from a known mass of a compound. The conversion is mass — moles.

Calculate Solve for the unknown.

Determine the molar mass of Fe_2O_3 : 1 mol = 159.6 g Fe_2O_3 Multiply the given mass by the conversion factor relating mass of Fe_2O_3 to moles of Fe_2O_3 .

moles =
$$92.2 \,\mathrm{gFe_2O_3} \times \frac{1 \,\mathrm{mol\,Fe_2O_3}}{159.6 \,\mathrm{gFe_2O_3}}$$

= $0.578 \,\mathrm{mol\,Fe_2O_3}$

Find the number of moles in $3.70 \times 10^{-1} g$ of boron.

Warm Up

What is the molar mass of sodium phosphate? How much would 0.37 mol of sodium phosphate weigh?

The Mole-Volume Relationship

What is the volume of a gas at STP?

The volume of a gas varies with temperature and pressure. Because of these variations, the volume of a gas is usually measured at a standard temperature and pressure.

Standard temperature and pressure (STP) means a temperature of $0^{\circ}C$ and a pressure of 101.3 kPa, or 1 atmosphere (atm).

Avogadro's hypothesis states that equal volumes of gases at the same temperature and pressure contain equal numbers of particles.

At STP, 1 mol (or 6.02×10^{23} representative particles) of any gas occupies a volume of 22.4 L.

The quantity 22.4 L is called the molar volume of a gas.

Calculating Volume at STP

volume of gas = moles of gas
$$\times \frac{22.4 \text{ L}}{1 \text{ mol}}$$

Calculating the volume of a gas at STP

Sulfur dioxide (SO_2) is a gas produced by burning coal. It is an air pollutant and one of the causes of acid rain. Determine the volume, in liters, of 0.60 mol SO_2 at STP.

Analyze List the knowns and the unknown.

Knowns

• moles = 0.60 mol SO_2

• 1 mol $SO_2 = 22.4 L SO_2$

Unknown

• volume = $? L SO_2$

Use the relationship 1 mol $SO_2 = 22.4 L SO_2$ (at STP) to write the conversion factor needed to convert moles to volume.

The conversion factor is $\frac{22.4 \text{ L SO}_2}{1 \text{ mol SO}_2}$.

Calculate Solve for the unknown.

volume =
$$0.60 \text{ mol} \cdot 80_2 \times \frac{22.4 \text{ L} \cdot 80_2}{1 \text{ mol} \cdot 80_2} = 13 \text{ L} \cdot 80_2$$

What is the volume of these gases at STP?

a. $3.20 \times 10^{-3} \text{ mol } CO_2$

b. 3.70 mol N₂

Counting:

The Mole Road Map

1. Calculate the number of moles in a spoonful of table sugar ($C_{12}H_{22}O_{11}$) having a mass of 10.5 g.

a.32.6 mol

 $b.3.59 \times 10^3 \text{ mol}$

 $c.3.07 \times 10^{-2} \text{ mol}$

 $d.1.85 \times 10^{22} \text{ mol}$

2. What is the volume of 0.35 mol of oxygen gas at STP?

a.32 L

b.64 L

c.7.8 L

d.16 L

Practice Problems (use the Mole Road Map!)

p. 298

#17

p. 299

#19

p. 301

#21

p. 303

#26-28

p. 315

#47-54, 58-60