
Scientific Inquiry

Standard B – 1.3

Standard B-1

The student will demonstrate an understanding of how scientific inquiry and technological design, including mathematical analysis, can be used appropriately to pose questions, seek answers, and develop solutions.

B-1.3

Use scientific instruments to record measurement data in appropriate metric units that reflect the precision and accuracy of each particular instrument.

Key Concepts

• Reading scientific measuring instruments

Metric Units

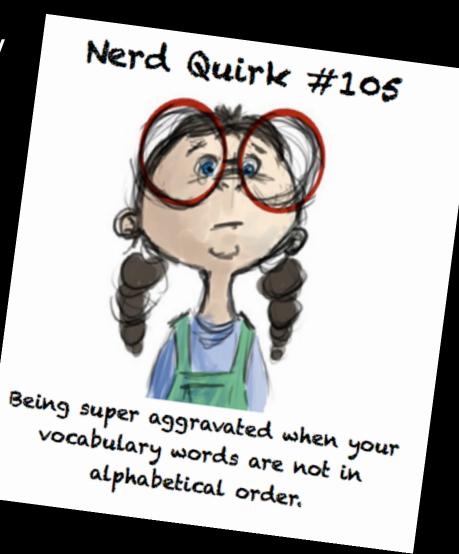
Measurement Data

• Precision vs. Accuracy

What You Already Know!

In the 1st grade you used a ruler. In the 2nd grade you used thermometers and balances. By 3rd grade you used meter tapes and graduated cylinders and by the 6th grade you were using spring scales and beam balances. You have used various scientific tools for a long time.

What You Should Understand After This Lesson


- Read scientific instruments using the correct number of decimals to record the measurements in appropriate metric units.
- The measurement scale on the instrument should be read with the last digit of the recorded measurement being estimated.
- Record data using appropriate SI units.
- Understand the difference between precision and accuracy.

Objective

- **Compare** precise vs. accurate measurement data.
- Summarize accuracy & precision with specific scientific instruments in making measurements.
- *Identify* the appropriate instrument that meets the measurement need and appropriate precision for a designed experiment.

Vocabulary

There are no vocabulary words for this section.

Measurement

Measurement is an important type of observation. It is an observation that includes numbers and units.

> SI or <u>metric system</u> Based on multiples of <u>10</u> Prefixes before the base

Prefix	Symbol	Multiplier		
380 B	E	10^{10}	1,000,000,000,000,000,000	
peta	P	10 ¹⁵	1.000,000.000,000,000	
lera	Т	10 ¹²	1,000,000,000,000	
giga	G	10 ⁹	1,000,000,000	
mega	M	IC ^ε	1,000,000	
kilo	k	10^{2}	1,000	
hecto	h	10°	100	
deka	da	101	10	
deci	d	1C ⁻¹	0.1	
centi	С	10^{-2}	0.01	
n:ill	m	1C ⁻³	0 001	
ະໜ່າສະວ	<i>[</i> 2	10-5	0.000,001	
nano	n	10-2	0.000,000,001	
pico	p	10-12	0.000.000.000.001	
micromicro	$\mu\mu$	10	0.000,000,000,001	
lènto	1	10-13	0 000,000.000,000,001	
atte	а	10^{-18}	0.000,000,000,000,000,000,001	

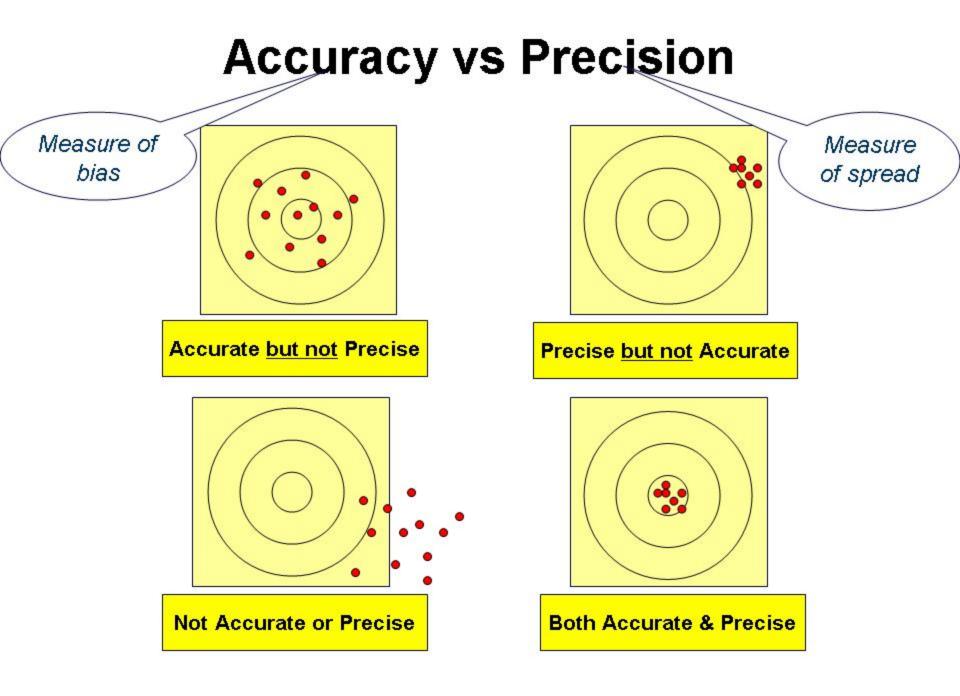
It's all about the prefix.

Prefix	Symbol	Multiplier		
980	E	10^{10}	1,000,000,000,000,000,000	
peta	P	10 ¹⁶	1.000,000.000,000,000	
lera	Т	1012	1,000,000,000,000	
giga	G	10°	1,000,000,000	
mega	м	10^{4}	1,000,000	
kilo	k	10^{2}	1,000	
hecto	հ	10°	100	
deka	da	101	10	
deci	d	10-1	0.1	
centi	С	10^{-2}	0.01	
nill	m	1C ⁻³	0 001	
criin o	f_{i}^{i}	10-5	0.000,001	
nano	n	10-2	0.000,000,001	
pico	p	10-12	0.000.000.000.001	
micromicro	μμ	10	0.000,000,000,001	
lento	1	10-13	0 000,000.000,000,001	
atte	а	10^{-18}	0.000,000,000,000,000,000,001	

Answers G 1 2. С 3. F 4. K 5. 6. J [B Н 8. 9. D 10. E 1 1 A

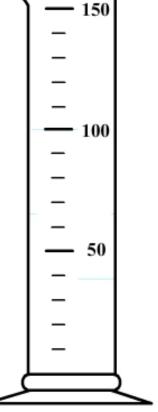
What if I want to convert?

Dimensional analysis is a way to convert measurements between different units to help compare them.


WHAT YOU WANT

WHAT YOU HAVE

Examples


1. 11 mm = _____ cm

- 2. 261 g = _____ kg
- 3. 9474 mm = _____ cm

Precision vs. Accuracy

Precision is the amount of detail in measurements, or how closely two or more measurements agree.

Graduated cylinder n°1 The volume between two graduations corresponds to 10 mL Graduated cylinder n°2 The volume between two graduations corresponds to 2 mL

Graduated cylinder n°3 The volume between two graduations corresponds to 1 mL

Precision vs. Accuracy

Accuracy is how close a measurement is to the actual or accepted value for that measurement.

4 test results hit the bullseye Accuracy

Mass	Volume	Density	Table 1
0.02 kg	0.013 L	1.5 kg/L	
0.02 kg	0.018 L	1.1 kg/L	
0.02 kg	0.016 L	1.3 kg/L	
	Mass	Volume	Density
	0.016 kg	0.013 L	1.2 kg/L
Table 2	0.019 kg	0.017 L	1.1 kg/L
	0.016 kg	0.015 L	1.1 kg/L