Scientific Inquiry

Standard B-1.3

Standard B-1

The student will demonstrate an understanding of how scientific inquiry and technological design, including mathematical analysis, can be used appropriately to pose questions, seek answers, and develop solutions.

B-1.3
Use scientific instruments to record measurement data in appropriate metric units that reflect the precision and accuracy of each particular instrument.

Key Concepts

- Reading scientific measuring instruments
- Metric Units
- Measurement Data
- Precision vs. Accuracy

What You Already Know!

In the $1^{\text {st }}$ grade you used a ruler. In the $2^{\text {nd }}$ grade you used thermometers and balances. By $3^{\text {rd }}$ grade you used meter tapes and graduated cylinders and by the $6^{\text {th }}$ grade you were using spring scales and beam balances. You have used various scientific tools for a long time.

What You Should Understand After This Lesson

- Read scientific instruments using the correct number of decimals to record the measurements in appropriate metric units.
- The measurement scale on the instrument should be read with the last digit of the recorded measurement being estimated.
- Record data using appropriate SI units.
- Understand the difference between precision and accuracy.

Objective

- Compare precise vs. accurate measurement data.
- Summarize accuracy \& precision with specific scientific instruments in making measurements.
- Identify the appropriate instrument that meets the measurement need and appropriate precision for a designed experiment.

Vocabulary

There are no vocabulary words for this section.

Nerd Quirk \#10s

Being super aggravated when your vocabulary words are not in alphabetical order.

Measurement

Measurement is an important type of observation.
It is an observation that includes numbers and units.

SI or metric system
Based on multiples of 10
Prefixes before the base

Hrefix	Symbol	Multiplier	
389	E	10^{10}	1．0以，0000，010， 000000,000
pera	P	$1 C^{5}$	1．09C．000．000．900．00）
\％\％\％\％	T	10^{12}	1．09C．000．000，96．0
gige．	1	10^{6}	1.090 ¢0，
mega	M	16^{-t}	1．0\％，000
kulo	k	10^{-}	1.000
tuelv	h	$1 C^{2}$	100
ceka	da	10^{1}	1.
deci	d	$1 \mathrm{C}^{-1}$	01
centi	c	10^{-2}	101
null	in	$1 C^{-3}$	1） 001
－rin ד：	$1:$	10^{-5}	1）0．9\％，0¢11
r．ano	H	10^{-2}	
pice micromicro	た $\mu \mu$	10^{-12}	i） $0.0 \mathrm{c}, 0000.000,96$.
Eurlo	「	$1 C^{-15}$	D）09C．000．000．9C0．001
a．ts	a	10^{-18}	

It＇s all about
 the prefix．

Answers

Hrefix	Symbol	Multiplier	
E8a	E	$1 c^{10}$	1.00,000,000, 000000,000
pera	F	$1 C^{5}$	1.000 .000 .000 .000 .000
Lrim	T	10^{12}	$1.000,000.000,000$
989	G	10^{5}	$1.0 \mathrm{MC}, \mathrm{mon}, \mathrm{mon}$
mega	M	16^{6}	1.00,000
kulo	k	$1 c^{\text {a }}$	1.00
tuelio	h	$1 c^{i}$	101
ceka	da	$1 c^{\prime}$	13
deci	d	$1 \mathrm{C}^{-1}$	11
cents	c	$1 \mathrm{C}^{-2}$	101
null	12	10^{-3}	1) 091
-тi.: ${ }^{\text {\% }}$	$\stackrel{1}{ }$	10^{-5}	1) 0.0).0061
rano	n	10^{-2}	$0 \mathrm{Om}, 0000001$
pice riceomicro	$\begin{aligned} & \mathrm{F} \\ & \mu \mu \end{aligned}$	10^{-13}	1) $006.00000000 .0 C^{-}$
-̇п.L	1	$1 C^{-15}$	1) OXC.000.000. $2 C 0.001$
a.te	a	$1 C^{-18}$	

What if I want to convert?

Dimensional analysis is a way to convert measurements between different units to help compare them.

> WHAT YOU WANT

WHAT YOU HAVE

Examples

1. $11 \mathrm{~mm}=\ldots \mathrm{cm}$

$$
\text { 2. } 261 \mathrm{~g}=\ldots \mathrm{kg}
$$

3. $9474 \mathrm{~mm}=\ldots \mathrm{cm}$

Accuracy vs Precision

Measure of bias

Accurate but not Precise

Not Accurate or Precise
 of spread

Precise but not Accurate

Both Accurate \& Precise

Precision vs. Accuracy

Precision is the amount of detail in measurements, or how closely two or more measurements agree.

-150
-
-
-
-
-100
-
-
-
-
-
-
-
-

Graduated cylinder $\mathrm{n}^{\circ} 1$
The volume between two graduations corresponds to 10 mL

Graduated cylinder n ${ }^{\circ}$ 2
The volume between two graduations corresponds to 2 mL

Graduated cylinder n ${ }^{\circ} 3$ The volume between two graduations corresponds to 1 mL

Precision vs. Accuracy

Accuracy is how close a measurement is to the actual or accepted value for that measurement.

Accuracy

