
Scientific Inquiry

Standards B – 1.4 & 1.6

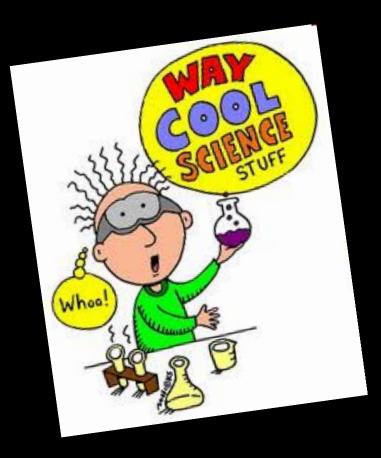
Standard B-1

The student will demonstrate an understanding of how scientific inquiry and technological design, including mathematical analysis, can be used appropriately to pose questions, seek answers, and develop solutions.

B-1.4

Design a scientific investigation with appropriate methods of control to test a hypothesis , and evaluate the designs of sample investigations.

B-1.6


Evaluate the results of a controlled scientific investigation in terms of whether they refute or verify the hypothesis.

Key Concepts

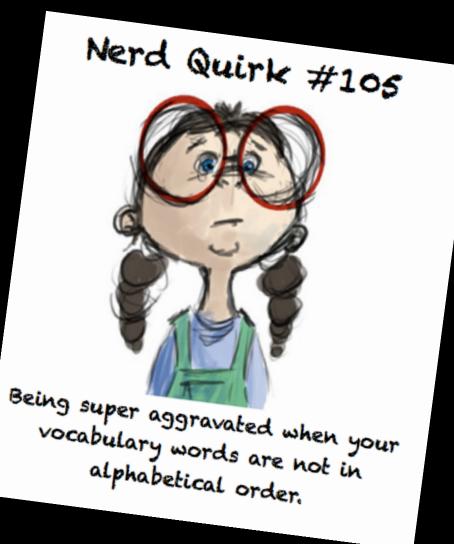
Scientific Investigations

Methods of Control in Scientific Investigations

What You Already Know!

Since the 4th grade, you have been studying the characteristics of a simple scientific investigation that tests one manipulated variable at a time. By middle school, you were designing and evaluating your own scientific investigations.

What You Should Understand After This Lesson


- Design a controlled scientific investigation in which one variable at a time is deliberately changed and the effect on another variable is observed while holding all other variables constant. This relationship is a "cause-andeffect" relationship.
- Understand the parts of a scientific investigation and the importance of communicating results.

Objective

- **Classify** the types of variables and constants in a controlled investigation.
- *Summarize* the components of a controlled scientific investigation.
- *Interpret* the data of a scientific investigation to determine if the conclusion is valid.

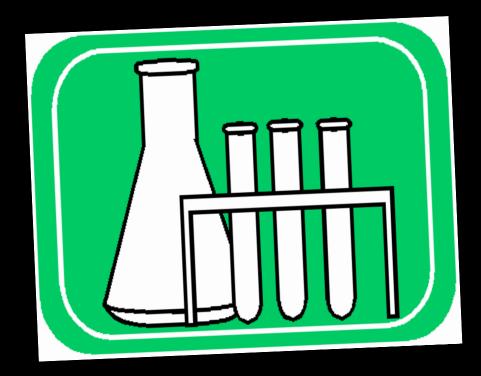
Vocabulary

- 1. Observation
- 2. Data
- 3. Experiment
- 4. Constant
- 5. Theory

Scientific Thinking

Biologists ask questions about the world around them and use observation and experimentation to answer questions about it.

Scientific Thinking


A good biologist is:

- Skeptical
- Curious
- Open-minded
- Accepting of new ideas

The Scientific Method

The Scientific Method is used in order to help scientists solve problems and answer questions. It is a precise way of conducting an investigation which will give the best results.

The Scientific Method

Biology is an empirical science Deals with the NATURAL WORLD

OBSERVING

EVALUATING RESULTS

Parts of the Scientific Method:

- 1. Observation (Data Collection)
- 2. Forming hypotheses (Educated Guess)
- 3. Testing hypotheses (Experiment)
- 4. Analyzing Data (Results)
- 5. Evaluating Results (Drawing Conclusions)

Observational studies allow scientists to describe a phenomenon.

Observation

- All scientific inquiry begins with **observation**.
- Cannot be biased; has to be fair.
- Using one or more of the 5 senses to collect, describe, and categorize <u>data</u>.
 - Quantitative or Qualitative Data
- Using computers to collect measurements or examine past research observations.

Quantitative Data

- Number
 - 12 cm long
 - 3 elephants
 - Twenty four grams
- Represented via some type of graph

Qualitative Data

- Words/Description
 - The tiger is orange and black.
 - The gorilla is not an aggressive animal unless provoked.
- Represented via some type of chart/table or notes.

hypothesis

Forming Hypotheses – Preliminary possible explanation of data; an educated guess

<u>Hypotheses</u> help scientists find answers to questions

Testing Hypotheses

- Conducting an experiment
- Shows a cause and effect relationship
- Tests 1 variable at a time.
- IV, DV, CG, and Constants

Variable Identification

Analyzing Data

- Statistics plays a role
- Construct charts, tables, graphs, plots, models, etc.

Evaluating Data

- Occurs after analysis
- Drawing conclusions
- Can lead to theories
- May publish their results for others.

